2004
DOI: 10.1090/s0002-9947-04-03461-0
|View full text |Cite
|
Sign up to set email alerts
|

Quadratic forms and Pfister neighbors in characteristic 2

Abstract: Abstract. We study Pfister neighbors and their characterization over fields of characteristic 2, where we include the case of singular forms. We give a somewhat simplified proof of a theorem of Fitzgerald which provides a criterion for when a nonsingular quadratic form q is similar to a Pfister form in terms of the hyperbolicity of this form over the function field of a form ϕ which is dominated by q. From this, we derive an analogue in characteristic 2 of a result by Knebusch saying that, in characteristic = … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
43
0
2

Year Published

2004
2004
2024
2024

Publication Types

Select...
8

Relationship

3
5

Authors

Journals

citations
Cited by 56 publications
(46 citation statements)
references
References 37 publications
1
43
0
2
Order By: Relevance
“…Another fact related to the domination relation that we will use is the following result knows as the "Completion Lemma": Proposition 2.3. ([5,Lem. 3.9]) Let ϕ and ψ be nonsingular F -quadratic forms and…”
Section: Quadratic Forms (Possibly Singular) Suppose That One Of the Two Following Conditions Holdsmentioning
confidence: 99%
See 1 more Smart Citation
“…Another fact related to the domination relation that we will use is the following result knows as the "Completion Lemma": Proposition 2.3. ([5,Lem. 3.9]) Let ϕ and ψ be nonsingular F -quadratic forms and…”
Section: Quadratic Forms (Possibly Singular) Suppose That One Of the Two Following Conditions Holdsmentioning
confidence: 99%
“…([5, Th. 4.2]) Let ϕ and ψ be F -quadratic forms such that ϕ is anisotropic and nonsingular and ψ is nondefective.…”
mentioning
confidence: 99%
“…On renvoie à [1] et [7] pour plus de détails sur certaines notions qu'on va utiliser sur les formes bilinéaires et quadratiques. Rappelons tout de même que deux formes bilinéaires (ou quadratiques) ϕ et ψ sont dites semblables si ϕ αψ pour α ∈ F * convenable.…”
Section: Rappels Et Résultats Préliminairesunclassified
“…Une forme quadratique (ou bilinéaire) de Pfister ϕ vérifie la propriété de multiplicativité, ce qui signifie que ϕ αϕ pour tout scalaire α ∈ D F (ϕ) ; de plus, si ϕ est isotrope, alors elle est hyperbolique (ou métabolique). Comme conséquence du théorème de sous-forme [7,Th Dans ce théorème on exclut la condition de similitude entre les formes bilinéaires elles-mêmes car, en général, deux formes bilinéaires de même dimension qui sont Witt-équivalentes ne sont pas nécesssairement isométriques. On démontre ce théorème de la même façon que le théorème 3.…”
Section: Rappels Et Résultats Préliminairesunclassified
“…Mori and Saito [21] studied them in the context of fibrations, using the name wild hypersurface bundle, in connection with the minimal model program. Hoffmann [13] studied such forms from an algebraic perspective, viewing them as generalizations of quadratic forms in characteristic 2; the latter were studied, for example, in [14]. It might be fruitful to combine algebraic and geometric approaches.…”
Section: §0 Introductionmentioning
confidence: 99%