We introduce and describe the class of split regular Hom-Leibniz color 3-algebras as the natural extension of the class of split Lie algebras, split Lie superalgebras, split Lie color algebras, split regular Hom-Lie algebras, split regular Hom-Lie superalgebras, split regular Hom-Lie color algebras, split Leibniz algebras, split Leibniz superalgebras, split Leibniz color algebras, split regular Hom-Leibniz algebras, split regular Hom-Leibniz superalgebras, split regular Hom-Leibniz color algebras, split Lie 3-algebras, split Lie 3-superalgebras, split Lie color 3-algebras, split regular Hom-Lie 3-algebras, split regular Hom-Lie 3superalgebras, split regular Hom-Lie color 3-algebras, split Lie triple systems, split Lie triple supersystems, split Lie triple color systems, split regular Hom-Lie triple systems, split regular Hom-Lie triple supersystems, split regular Hom-Lie triple color systems, split Leibniz 3-algebras, split Leibniz 3-superalgebras, split Leibniz color 3-algebras, split regular Hom-Leibniz 3-algebras, split regular Hom-Leibniz 3-superalgebras, and some other algebras. More precisely, we show that any of such split regular Hom-Leibniz color 3-algebras T is of the form T = U + j I j , with U a subspace of the 0-root space T 0 , and I j an ideal of T satisfying for j = k : [T, I j , I k ] + [I j , T, I k ] + [I j , I k , T ] = 0.Moreover, if T is of maximal length, we characterize the simplicity of T in terms of a connectivity property in its set of non-zero roots.