We discuss connections between sequential system identification and control for linear time-invariant systems, which we term indirect data-driven control, as well as a direct datadriven control approach seeking an optimal decision compatible with recorded data assembled in a Hankel matrix and robustified through suitable regularizations. We formulate these two problems in the language of behavioral systems theory and parametric mathematical programs, and we bridge them through a multicriteria formulation trading off system identification and control objectives. We illustrate our results with two methods from subspace identification and control: namely, subspace predictive control and low-rank approximation which constrain trajectories to be consistent with a non-parametric predictor derived from (respectively, the column span of) a data Hankel matrix. In both cases we conclude that direct and regularized data-driven control can be derived as convex relaxation of the indirect approach, and the regularizations account for an implicit identification step. Our analysis further reveals a novel regularizer and sheds light on the remarkable performance of direct methods on nonlinear systems.