2021
DOI: 10.1007/s10623-021-00918-z
|View full text |Cite
|
Sign up to set email alerts
|

Quadratic residue codes, rank three groups and PBIBDs

Abstract: The automorphism group of the Zetterberg code Z of length 17 (also a quadratic residue code) is a rank three group whose orbits on the coordinate pairs determine two strongly regular graphs equivalent to the Paley graph attached to the prime 17. As a consequence, codewords of a given weight of Z are the characteristic vectors of the blocks of a PBIBD with two associate classes of cyclic type. More generally, this construction of PBIBDs is extended to quadratic residue codes of length ≡ 1 (mod 8), to the adjace… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 11 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?