2002
DOI: 10.1007/978-3-642-56380-5
|View full text |Cite
|
Sign up to set email alerts
|

Quadratische Formen

Abstract: Dieses Werk ist urheberrechtlich geschiitzt. Die dadurch begriindeten Rechte, insbesondere die der Obersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Fnnksendung, der Mikroverfilmung oder der Vervielfăltigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfăltigung dieses Werkes ader von Tellen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
30
0

Year Published

2010
2010
2022
2022

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 59 publications
(30 citation statements)
references
References 0 publications
0
30
0
Order By: Relevance
“…For the first claim, see for example [Kne02,(6.20) and (6.21)]. The second assertion follows again from the local description of maximal orders.…”
Section: Quaternion Ordersmentioning
confidence: 90%
“…For the first claim, see for example [Kne02,(6.20) and (6.21)]. The second assertion follows again from the local description of maximal orders.…”
Section: Quaternion Ordersmentioning
confidence: 90%
“…called the spinor norm, and that Ker(SN ) = Im(Spin(V, q) Q → SO(V, q) Q ), see e.g. [Kn,Abschnitt 8].…”
Section: Definition 32 a Rational Hodge Isometry Between Hmentioning
confidence: 99%
“…For more details we refer to [25,Section 102] or [13, Chapter VII-X]. The latter reference, [13,Section 28], also describes an algorithm, the Kneser-neighbor-algorithm, that is used to enumerate all isometry classes of lattices in a genus. This algorithm is available in Magma [3].…”
Section: Genera Of Lattices and The Mass Formula Two Latticesmentioning
confidence: 99%
“…We try to be very brief and not to overload the paper with definitions. The interested reader is referred to the textbooks [14] (for more geometric properties of lattices), [7] (for the relations between lattices and modular forms), [13] and [25] (for the arithmetic theory of quadratic forms) and also the famous collection [6]. The most important notions are given in Section 2 which also lists the current state of knowledge on extremal lattices in Section 2.3.…”
Section: Introductionmentioning
confidence: 99%