Purpose of Review
Preservation or repair of the aortic valve has evolved dynamically in the past 20 years. It leads to a high freedom from valve-related complications if an adequate valve durability can be achieved; it may possibly also improve survival. To date, little structured information is available about which valves can be repaired and which should better be replaced.
Recent Findings
For surgical decision-making, the size of the aortic root is important and the anatomy of the aortic valve must be considered. In the presence of root aneurysm, most tricuspid and bicuspid aortic valves can be preserved. In aortic regurgitation and normal aortic dimensions, the majority of tricuspid and bicuspid aortic valves can be repaired with good long-term durability. In bicuspid aortic valves, the morphologic characteristics must be taken into consideration. Unicuspid and quadricuspid aortic valves can be repaired in selected cases. Generally, cusp calcification is a sign of a poor substrate for repair; the same is true for cusp retraction and cusp destruction due to active endocarditis. They are associated with limited valve durability.
Summary
Using current concepts, many non-calcified aortic valves can be repaired. Modern imaging, in particular three-dimensional transesophageal echocardiography (TEE), should be able to define repairable aortic valves with a high probability.