1995
DOI: 10.1007/s002110050117
|View full text |Cite
|
Sign up to set email alerts
|

Quadrilateral finite elements of FVS type and class $C^\rho$

Abstract: Let P be some partition of a planar polygonal domain Ω into quadrilaterals. Given a smooth function u, we construct piecewise polynomial functions υ ∈ C ρ (Ω) of degree n = 3ρ for ρ odd, and n = 3ρ + 1 for ρ even on a subtriangulation τ 4 of P . The latter is obtained by drawing diagonals in each Q ∈ P , and υ|Q is a composite quadrilateral finite element generalizing the classical C 1 cubic Fraeijs de Veubeke and Sander (or FVS) quadrilateral. The function υ interpolates the derivatives of u up to order ρ + [… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
4

Year Published

1996
1996
2011
2011

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(10 citation statements)
references
References 10 publications
0
6
0
4
Order By: Relevance
“…In [18] we do this for the well-known Clough-Tocher split. For results on quadrangulations, see [14], [17].…”
Section: Remarksmentioning
confidence: 99%
“…In [18] we do this for the well-known Clough-Tocher split. For results on quadrangulations, see [14], [17].…”
Section: Remarksmentioning
confidence: 99%
“…The other case is that of FVS-triangulations obtained from arbitrary srictly convex quadrangulations by adding two diagonals of each quadrilateral, see, e.g., [20,43]. Here, a well-known composite finite element due to Fraeijs de Veubeke and Sander gives rise to a stable local basis for C 1 cubics, while for higher orders of differentiability only non-nested superspline-type constructions are known [40,45,46]. Proof.…”
Section: Refinable Composite Finite Elementsmentioning
confidence: 99%
“…Il aétéétabli dans [11] que l'élément fini classique de type FVS, de classe C 1 dont le polynôme sur chaque triangle T l est de degré 3 est optimal dans le sens où il jouit de la propriété du plus bas degré polynômial. Cela ne nous empêche pas de construire des schémas de degré plusélevé.…”
Section: Schéma D'interpolation Polynômial De Classeunclassified
“…le calcul des dérivées normales de g d'ordre ≤ 2 sur chaque côté σ de T ∈ ∆ (resp. Q ∈ Q) dépend uniquement des données sur σ. sujet [10,15], et plus récemment les travaux de Laghchim-Lahlou et Sablonnière [8,9,11] sur leséléments finis composites). Par ailleurs, [2] et [14] ont construit des schémas dont l'ordre maximum des degrés de libertééxigé est 2 (voir aussi [12]).…”
Section: Introductionunclassified
See 1 more Smart Citation