For direct-drive legged robots operating in unstructured environments, workspace volume and force generation are competing, scarce resources. In this paper we demonstrate that introducing geared core actuation (i.e., proximal to rather than distal from the mass center) increases workspace volume and can provide a disproportionate amount of work-producing force to the mass center without affecting leg linkage transparency. These effects are analytically quantifiable up to modest assumptions, and are demonstrated empirically on a spined quadruped performing a leap both on level ground and from an isolated foothold (an archetypal feature of unstructured terrain). Abstract. For direct-drive legged robots operating in unstructured environments, workspace volume and force generation are competing, scarce resources.
Disciplines
Electrical and Computer Engineering | Engineering | Systems EngineeringIn this paper we demonstrate that introducing geared core actuation (i.e., proximal to rather than distal from the mass center) increases workspace volume and can provide a disproportionate amount of work-producing-force to the mass center without affecting leg linkage transparency. These effects are analytically quantifiable up to modest assumptions, and are demonstrated empirically on a spined quadruped performing a leap both on level ground and from an isolated foothold (an archetypal feature of unstructured terrain).