The neutron-rich nucleus 144 Ba (t 1/2 =11.5 s) is expected to exhibit some of the strongest octupole correlations among nuclei with mass numbers A less than 200. Until now, indirect evidence for such strong correlations has been inferred from observations such as enhanced E1 transitions and interleaving positive-and negative-parity levels in the ground-state band. In this experiment, the octupole strength was measured directly by sub-barrier, multi-step Coulomb excitation of a postaccelerated 650-MeV 144 Ba beam on a 1.0-mg/cm 2 208 Pb target. The measured value of the matrix element, 3 − 1 M(E3) 0 + 1 = 0.65( +17 −23 ) eb 3/2 , corresponds to a reduced B(E3) transition probability of 48( +25 −34 ) W.u. This result represents an unambiguous determination of the octupole collectivity, is larger than any available theoretical prediction, and is consistent with octupole deformation.