<div>
<div>
<div>
<p>X−NH2 and X−OH (for X = Li, BeH, BH2, Na, MgH, and AlH2) exhibit a reduction
in hybridization in the N and O atoms, and likely in F, as well. CCSD(T)-F12/cc-pVTZ-F12 optimizations for all combinations of atoms smaller than chlorine (excluding
the noble gasses) where the standard valences are filled with hydrogen atoms give breaks
in the expected periodic trends. While most bond energies for a given atom increase when
bonded to all atoms across a given row in the period table, X−NH2, X−OH, and X−F
actually have the strongest bonds with X = BH2 and AlH2. Furthermore, the buildup in
bond energy from the alkali to alkaline-earth metals is steady, and the decrease to Group
14 and beyond is also steady. The interactions of X−NH2 and X−OH with X = Li, BeH,
BH2, Na, MgH, and AlH2 also produce either linear or fully planar geometries. All of
these factors imply that the lone pair on the N or O atoms are datively bonding with
the empty <i>p</i> orbitals in the other atoms. This leads to a reduction in hybridization. The
non-periodic strengths of these bonds have implications for the detection of molecules in
space as well as in models for the formation of refractory molecules and condensation of
mineral species in early stages of planet formation.
</p>
</div>
</div>
</div>