The combination of 1 H NMR spectroscopy and multivariate statistical analysis has become a promising method for the discrimination of food origins. In this paper, this method has been successfully employed to analyze 70 Chinese honey samples from eight botanic origins, three geographical origins, and five production dates. Thirty-three components in honey samples were detected and identified from their 1 H NMR spectra, and 20 of them were accurately quantified by comparing their integral area with that of internal standards with relaxation time correction. Nontargeted principal component analysis (PCA) has been applied to distinguish the honeys from different botanical and geographical origins. The variations of components in the honeys, including saccharides and all kind of amino and organic carboxylic acids, confirmed their clustering according to their origins in PCA scores plots. Orthogonal partial least squares discriminant analysis (OPLS-DA) based on the NMR data for the different pairwise honey samples allows to identify the compositional variations contributed to geographical discrimination and storage time. Hence, NMR spectroscopy coupled with chemometric techniques offers an efficient tool for quality control of honey, and it could further serve to the classification, qualitative and quantitative control of other foods.