Severe stone deterioration is evident at the Cologne cathedral. In particular, the ''Drachenfels'' trachyte, which was the building material of the medieval construction period, shows significant structural deterioration as well as massive formation of gypsum crusts. The present article investigates crust formation on limestone, sandstone, and volcanic rock from the Cologne cathedral as well as from the Xanten and Altenberg cathedrals. These three buildings, showing varying degrees of deterioration, are located in different areas and exposed to varying industrial, urban, and rural pollution. Thin laminar and black framboidal crusts form on calcareous as well as silicate stone. The lack of a significant intrinsic calcium and sulfur source for the formation of the gypsum crusts on the Drachenfels trachyte indicates major extrinsic environmental impact: a sufficient offer of SO x from pollutant fluxes as well as external calcium sources (e.g., pollution, mortars, neighboring calcite stones). Chemical analyses reveal strong gypsum enrichment within the crusts as well as higher concentrations of lead and other pollutants (arsenic, antimony, bismuth, tin, etc.), which generally can be linked to traffic and industry. The formation of weathering crusts in an industrial environment is clearly distinguishable from that in rural areas. Scanning electron microscopy observations confirm that the total amount of pollution is less at the Altenberg cathedral than at the Cologne and Xanten cathedrals. XRF analyses show that the formation of gypsum occurs in lower amounts at Altenberg. This correlates well with the measured SO 2 content and the intensity of the decay at the different locations. Furthermore, the different types of crusts, e.g., framboidal and laminar, can be differentiated and assigned to the different locations. The black weathering crusts on the silicate Drachenfels trachyte contribute to the degradation of the historic building material. They enhance mechanical moisture-related deterioration processes and the decay by chemical corrosion of rock-forming minerals. Although SO 2 concentrations in air have shown a strong decrease over the past 30 years, degradation in connection with weathering crusts is still observed. This indicates that not only contemporary or recent emissions, but also past pollutant concentrations have to be considered.