Recently, various adaptation methods have been proposed to cope with throughput fluctuations in HTTP adaptive streaming (HAS). However, these methods have mostly focused on constant bitrate (CBR) videos. Moreover, most of them are qualitative in the sense that performance metrics could only be obtained after a streaming session. In this paper, we propose a new adaptation method for streaming variable bitrate (VBR) videos using stochastic dynamic programming (SDP). With this approach, the system should have a probabilistic characterization along with the definition of a cost function that is minimized by a control strategy. Our solution is based on a new statistical model where the future streaming performance is directly related to the past bandwidth statistics. We develop mathematical models to predict and develop simulation models to measure the average performance of the adaptation policy. The experimental results show that the prediction models can provide accurate performance prediction which is useful in planning adaptation policy and that our proposed adaptation method outperforms the existing ones in terms of average quality and average quality switch.