Compaction quality of railroad subgrade relates directly to the stability and safety of train operation, and the core problem of the Intelligent Compaction of railroads is the transmission and evolution characteristics of vibration wave. Aiming at the shortages in exploring the transmission and evolution characteristics of the vibration signal, the typical subgrade compaction project of Jingxiong Intercity Railway Gu’an Station was selected to carry out the field prototypes tests, and the dynamic response from the vibratory roller to filling materials was monitored in the whole compaction process, and some efficient field tests data will be obtained. Based on this, the transmission and evolution characteristics of the vibration wave from the vibratory roller to filling materials in the compaction process are studied from the time domain, frequency domain, jointed time–frequency domain and energy domain by using one new signal analysis technology—Hilbert–Huang Transform. Some conclusions are shown as follows: first, the vibration acceleration peak gradually decreases with the increase of buried depth, and when the buried depth reaches 1.8 m, the vibration acceleration peak is closed to zero. At the same time, when the vibration wave propagates from the wheel to the surface of filling, the attenuation rate of acceleration gradually increases with the increase of rolling compaction times, while the attenuation rate of other layers in different buried depths gradually decreases. Second, the vibration wave contains fundamental wave and multiple harmonics, and the dominant frequency of the fundamental wave is nearly 21 Hz. With the increase of buried depth, the amplitude of fundamental, primary, secondary, until fifth harmonics decreases exponentially and the concrete functional relationship among different amplitudes of harmonics can be summarized as y = Ae−BX. Third, the vibration energy focuses on the fundamental wave and primary wave, which can increase with the increase of rolling compaction times, and when the rolling compaction time reaches five, their energy reaches maximum. However, when the filling reaches a dense situation, the energy of the primary wave gradually decreases. Therefore, the maximum rolling compaction time is five in the practical engineering applications, which will be helpful for optimizing the compaction quality control models and providing some support for the development of the Intelligent Compaction theory of railway subgrade.