The aim of this research is to develop optimization models in deriving optimum target of key characteristic (KC). There are two kinds of product KCs introduced in this paper, namely performance and dimension product KC. The performance product KC target values must be determined by balancing customer and designer utilities subject to design cost and time provided by a company. The KCs of a product can be visualized using a KC flow-down which shows the hierarchical structure of the product. The flow-down may consist of many levels from product KC to process KC. Using axiomatic design as a methodology to map the flow-down, we conclude that product KC, assembly-components KC, and process KC are in functional domain, physical domain, and process domain respectively. In this paper, the objective function of the model for deriving optimum product KC target is to minimize utility gap between customer and designer subject to design cost and time. The assembly-component KCs have to be derived considering the product KC targets. In the absence of product KC target, the objective function of the model is to maximize the desired effect or minimizing the undesired effect. In the existence of product KC target, the objective function of the model is to attain the target considering technical constraints of the product. We use a shaft design problem as a numerical example to show the implementation of the models.