Purpose
The purpose of this paper is to compare the performance of various multifactor asset pricing models across ten emerging and developed markets.
Design/methodology/approach
The general methodology to test asset pricing models involves regressing test asset returns (left-hand side assets) on pricing factors (right-hand side assets). Then the performance of different models is evaluated based on how well they price multiple test assets together. The parameters used to compare relative performance of different models are their pricing errors (GRS statistic and average absolute intercepts) and explained variation (average adjusted R2).
Findings
The Fama-French five-factor model improves the pricing performance for stocks in Australia, Canada, China and the USA. The pricing in these countries appears to be more integrated. However, the superior performance in these four countries is not consistent across a variety of test assets and the magnitude of reduction in pricing errors vis-à-vis three- or four-factor models is often economically insignificant. For other markets, the parsimonious three-factor model or its four-factor variants appear to be more suitable.
Originality/value
Unlike most asset pricing studies that use test assets based on variables that are already used to construct RHS factors, this study uses test assets that are generally different from RHS sorts. This makes the tests more robust and less biased to be in favour of any multifactor model. Also, most international studies of asset pricing tests use data for different markets and combine them into regions. This study provides the evidence from ten countries separately because prior research has shown that locally constructed factors are more suitable to explain asset prices. Further, this study also tests for the usefulness of adding a quality factor in the existing asset pricing models.