The principal bitter sesquiterpene lactones (BSLs; latucin, 8-deoxylactucin, and lactucopicrin) in six red and four green-pigmented leaf lettuce (Lactuca sativa L. var. crispa L.) cultivars were identified and quantified using high-performance liquid chromatography, proton nuclear magnetic resonance, and liquid chromatography–mass spectrometry and the contribution of each to the overall bitterness was determined. The concentration of each BSL and the total varied significantly among cultivars and there were significant differences resulting from leaf color (green versus red) and morphology (cut versus curled leaves) with red and curled leaf cultivars having higher BSL concentrations. The concentrations of lactucin, 8-deoxylactucin, and lactucopicrin ranged from 2.9 to 17.2, 2.8 to 17.1, and 8.8 to 36.1 μg·g−1 dry weight, respectively, with the total concentration ranging from 14.6 to 67.7 μg·g−1. Bitterness of the cultivars was assessed using a bitter activity value calculated using the concentration and bitterness threshold value for each BSL. Lactucopicrin was the primary contributor to bitterness as a result of its concentration and lower bitterness threshold; its relative proportion of the total bitterness activity value across all cultivars was over 72%. The concentration of individual BSLs differed with leaf location on the plant (i.e., basal, midstalk, and flower stalk). The concentrations in lactucin, 8-deoxylactucin, and lactucopicrin in flower stalk leaves were significantly higher (i.e., 2.9, 12.4, and 5.4 times, respectively) than in basal leaves, with the concentrations increasing acropetally. Genetic differences among cultivars and with leaf location on the plant contribute to the wide range in bitterness in lettuce.