In a fluorescence polarization screen for the MYC-MAX interaction, we have identified a novel small-molecule inhibitor of MYC, KJ-Pyr-9, from a Kröhnke pyridine library. The K d of KJ-Pyr-9 for MYC in vitro is 6.5 ± 1.0 nM, as determined by backscattering interferometry; KJ-Pyr-9 also interferes with MYC-MAX complex formation in the cell, as shown in a protein fragment complementation assay. KJ-Pyr-9 specifically inhibits MYC-induced oncogenic transformation in cell culture; it has no or only weak effects on the oncogenic activity of several unrelated oncoproteins. KJ-Pyr-9 preferentially interferes with the proliferation of MYC-overexpressing human and avian cells and specifically reduces the MYC-driven transcriptional signature. In vivo, KJ-Pyr-9 effectively blocks the growth of a xenotransplant of MYC-amplified human cancer cells.M YC is a transcriptional regulator that occupies an apex position in the organizational hierarchy of the cell (1-3). It belongs to a family of basic helix-loop-helix leucine zipper (bHLH-LZ) proteins that dimerize with the small bHLH-LZ protein MAX to become functional (4). The MYC-MAX heterodimer preferentially binds to the palindromic DNA sequence CACGTG, referred to as the E-box motif. As a transcription factor, MYC can bind to the promoters of target genes to stimulate or repress transcriptional activity (5-7). The human genome contains three MYC genes, c-MYC, N-MYC, and L-MYC. Throughout this paper, we will use "MYC" to indicate the protein product of the c-MYC gene.MYC is involved in almost all cancers (8, 9). It is rarely mutated, but achieves gain of function through overexpression or amplification. Because of this broad pathogenic significance, MYC is an important cancer target. However, both conceptual and practical difficulties have stood in the way of identifying potent and effective small-molecule inhibitors of MYC. The conceptual obstacles reflect concern about inhibiting a gene that controls essential cellular activities. Because MYC plays an important role in cell proliferation (10, 11), it is often argued that inhibition of this function would lead to broad and unacceptable side effects in vivo. However, studies with the dominant-negative MYC construct Omomyc have shown that inhibiting MYC has only mild and rapidly reversible effects on normal, fast-proliferating tissues (8,12,13). The main practical difficulty in targeting MYC is the absence of pockets or grooves that could serve as binding sites for small molecules (14).The preferred strategy for the identification of potential MYC inhibitors has been interference with MYC-MAX dimerization (15-18). The formation of the MYC-MAX heterodimer involves the bHLH-LZ domains of the two partner molecules with a protein-protein interaction (PPI) surface of ∼3,200 Å 2 . This surface lacks well-defined binding sites for small molecules and therefore is widely considered as "undruggable." However, despite the large interaction surface, a single-amino acid substitution can completely disrupt the dimerization of MYC with MAX (14...