NUCLEAR MEDICINEORIGINAL ARTICLE PURPOSE We investigated the usability of standardized uptake values (SUV) obtained from both two-and three-dimensional (2D and 3D) positron-emission tomography and computed tomography (PET-CT) imaging, and compared the images obtained from these techniques in terms of image quality, lesion detectability, and the presence of artifacts.
MATERIALS AND METHODSImage data from 100 patients, who had undergone two PET imagings obtained in 2D and 3D mode after a low dose CT, were evaluated prospectively. Subjective analysis of 2D and 3D images was performed by two readers evaluating the following criteria: overall image quality, detectability of each identified lesion, and the presence of artifacts. The lesions recognized by the readers were also analyzed quantitatively by measuring SUV values.
RESULTSThere was a significant difference between the SUVs obtained in 2D and 3D modes. Regardless if the first scan was performed in 2D or 3D mode, the values obtained from 3D imaging were significantly lower than those obtained from 2D imaging (mean SUV max was 10.48±7.57 for 2D, and 9.66±6.93 for 3D, P < 0.001). Visual analysis did not reveal significant differences regarding lesion detectability between two modes.
CONCLUSIONIn oncological PET-CT applications, SUV values are significantly lower in 3D compared with 2D mode. Thus when serial scanning is needed to evaluate response to therapy in the same patient, the imaging modality should be taken into account and performed with the same method to avoid misinterpretation. Additionally, 3D PET-CT imaging can be used instead of 2D PET-CT due to its shorter scanning time without loss of lesion detectability. F-FDG PET is now routinely used in detecting, staging, and evaluating treatment response of various tumors (1-4). The combination of PET and computed tomography (CT) provides the ability to accurately register the metabolic and molecular aspects of disease with anatomical findings, adding further information to the diagnosis and staging of tumors. PET-CT is a fast growing imaging modality worldwide (2).PET scanners from some vendors can acquire data in both two-dimensional (2D) and three-dimensional (3D) modes, whereas others can only acquire data in 3D mode (5). A shorter scan time and improved efficiency of 18 F-FDG use due to higher sensitivity in the 3D mode could theoretically be the main advantage of 3D acquisition compared to standard 2D (6).There are diverse approaches to assess the amount of 18 F-FDG uptake, though standardized uptake values (SUVs) are widely employed as a semi-quantitative index for tumor uptake (7,8). SUV can be affected by various factors, such as time of acquisition after radiopharmaceutical injection, plasma glucose level, partial volume effect, reconstruction parameters, and attenuation correction methods. In addition, SUV is known to depend on acquisition parameters and region of interest (ROI) selection. Therefore, SUVs may not only change with different modes of acquisition (2D or 3D mode), but also with the u...