Descaling roll is a key component used to remove iron oxide on billet surface in hot rolling production lines, and its surface properties have a significant effect on the quality of hot rolling products. The descaling roll is in bad service condition and subjected to the dynamic impact caused by high-pressure water erosion and high temperature billet descaling process for a long time. Under the action of high temperature, strong wear, multi-cycle heat, force, flow and multi-field strong coupling, the surface is prone to wear and corrosion failure, which affects the continuous rolling production. Submerged arc welding provides an effective way to repair and strengthen the descaling roll surface. The content of WC hard phase has a significant effect on welding quality. At the same time, direct submerged arc welding of Ni based WC wire on the descaling roll surface is easy to cause cracks, and a gradient synergistic strengthening effect can be formed by setting the transition bottom layer in welding. At present, there is a lack of experiments related to the preparation of flux-cored wire with different contents and the overlaying for the bottom submerged arc welding. Relevant studies are urgently needed to further reveal the welding process mechanism to provide significant theoretical support for the preparation of wire materials and the improvement of welding quality. In this paper, 30% and 60% WC flux-cored wires were prepared by employing Ni-Cr-B-Si alloy powder as the base powder, and submerged arc welding tests were conducted on the descaling roll, preparing three welding layers, namely 70% NiCrBSi + 30% WC without the bottom layer, 70% NiCrBSi + 30% WC with the bottom layer, and 40% NiCrBSi + 60% WC with the bottom layer. The properties of the welding layer were evaluated by SEM, XRD, EDS, hardness, friction and wear, corrosion and impact experiments. The results show that the WC hard phase added in the filler metal has dissolved and formed a new phase with other elements in the melting pool. The surfacing layer mainly contains Fe-Ni, Cr-C, Fe3Si, Ni3C and other phases. The surfacing layer prepared by a different amount of WC flux-cored wire and the surfacing layer with or without the bottom layer have great differences in microstructure and properties. This study lays a significant theoretical foundation for optimizing the submerged arc welding process and preparing welding materials for the descaling roll and has significant practical significance and application value.