BackgroundGastrointestinal contractions are controlled by an underlying bioelectrical activity. High-resolution spatiotemporal electrical mapping has become an important advance for investigating gastrointestinal electrical behaviors in health and motility disorders. However, research progress has been constrained by the low efficiency of the data analysis tasks. This work introduces a new efficient software package: GEMS (Gastrointestinal Electrical Mapping Suite), for analyzing and visualizing high-resolution multi-electrode gastrointestinal mapping data in spatiotemporal detail.ResultsGEMS incorporates a number of new and previously validated automated analytical and visualization methods into a coherent framework coupled to an intuitive and user-friendly graphical user interface. GEMS is implemented using MATLAB®, which combines sophisticated mathematical operations and GUI compatibility. Recorded slow wave data can be filtered via a range of inbuilt techniques, efficiently analyzed via automated event-detection and cycle clustering algorithms, and high quality isochronal activation maps, velocity field maps, amplitude maps, frequency (time interval) maps and data animations can be rapidly generated. Normal and dysrhythmic activities can be analyzed, including initiation and conduction abnormalities. The software is distributed free to academics via a community user website and forum (http://sites.google.com/site/gimappingsuite).ConclusionsThis software allows for the rapid analysis and generation of critical results from gastrointestinal high-resolution electrical mapping data, including quantitative analysis and graphical outputs for qualitative analysis. The software is designed to be used by non-experts in data and signal processing, and is intended to be used by clinical researchers as well as physiologists and bioengineers. The use and distribution of this software package will greatly accelerate efforts to improve the understanding of the causes and clinical consequences of gastrointestinal electrical disorders, through high-resolution electrical mapping.