“…Covering both foundational and applied perspectives, a crucial aspect to better understand quantum correlations, their potential advantages over classical resources but also their limitations in the processing of information, relies on understanding their geometry [21]. Many more works [22][23][24][25][26][27][28][29][30] have also revealed a number of interesting geometrical aspects of the set of quantum correlations. Perhaps the best available tool for studying the quantum-postquantum boundary is the Navascues-Pironio-Acin (NPA) hierarchy [31,32], which gives a series of outer approximations converging to a set of quantum correlations Q. Interestingly, in a more recent development [33], it was shown that any nonlocal correlation which belongs to the set of almost quantum correlations Q (1+ab) , the set determined by the (1 + ab) level of the NPA hierarchy [31,32], satisfies all physical principles proposed so far, with two possible exceptions: (i) the information causality principle [11,12] and its generalization [13], and (ii) the recently proposed principle of many-box locality [16].…”