Abstract:Increased sediment loads from accelerated catchment erosion significantly degrade waterways worldwide. In the South East Queensland region of Australia, sediment loads are degrading Moreton Bay, a Ramsar listed wetland of international significance. In this region, like most parts of coastal Australia, sediment is predominantly derived from gully and channel bank erosion processes. A novel approach is presented that uses carbon and nitrogen stable isotope ratios and elemental composition to discriminate between these often indistinguishable subsoil sediment sources. The conservativeness of these sediment properties is first tested by examining the effect of particle size separation (testing for consistency during transport) and the effect of sampling at different times (testing for temporal source consistency). The discrimination potential of these sediment properties is then assessed with the conservative properties, based on the particle size and temporal analyses, modelled to determine sediment provenance in three catchments. Nitrogen sediment properties were found to have significant particle size enrichment and high temporal variance indicative of non-conservative behaviour. Conversely, carbon stable isotopes had very limited particle size and temporal variability highlighting their suitability for sediment tracing. Channel erosion was modelled to be a significant source of sediment (μ 51%, σ 9%) contrasting desktop modelling research that estimated gully erosion is the predominant sediment source. To limit the supply of sediment to Moreton Bay, channel bank and gully erosion must both be targeted by sediment management programs. By distinguishing between subsoil sediment sources, this approach has the potential to enhance the management of sediment loads degrading waterways worldwide.