Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The role of trees in watershed hydrology is governed by many environmental factors along with their inherent characteristics and not surprisingly has generated diverse debates in the literature. Herein, this conceptual meta-analysis provides an opportunity to propose a conceptual model for understanding the role of trees in watershed hydrology and examine the conditions under which they can be an element that increases or decreases water supply in a watershed. To achieve this goal, this conceptual meta-analysis addressed the interaction of forest cover with climatic conditions, soil types, infiltration, siltation and erosion, water availability, and the diversity of ecological features. The novelty of the proposed conceptual model highlights that tree species and densities, climate, precipitation, type of aquifer, and topography are important factors affecting the relationships between trees and water availability. This suggests that forests can be used as a nature-based solution for conserving and managing natural resources, including water, soil, and air. To sum up, forests can reduce people’s footprint, thanks to their role in improving water and air quality, conserving soil, and other ecosystem services. The outcomes of this study should be valuable for decision-makers in understanding the types of forests that can be used in an area, following an approach of environmental sustainability and conservation aiming at restoring hydrological services, mitigating the costs of environmental services, promoting sustainable land use, managing water resources, and preserving and restoring soil water availability (SWA) when investing in reforestation for watershed hydrology, which is important for the human population and other activities.
The role of trees in watershed hydrology is governed by many environmental factors along with their inherent characteristics and not surprisingly has generated diverse debates in the literature. Herein, this conceptual meta-analysis provides an opportunity to propose a conceptual model for understanding the role of trees in watershed hydrology and examine the conditions under which they can be an element that increases or decreases water supply in a watershed. To achieve this goal, this conceptual meta-analysis addressed the interaction of forest cover with climatic conditions, soil types, infiltration, siltation and erosion, water availability, and the diversity of ecological features. The novelty of the proposed conceptual model highlights that tree species and densities, climate, precipitation, type of aquifer, and topography are important factors affecting the relationships between trees and water availability. This suggests that forests can be used as a nature-based solution for conserving and managing natural resources, including water, soil, and air. To sum up, forests can reduce people’s footprint, thanks to their role in improving water and air quality, conserving soil, and other ecosystem services. The outcomes of this study should be valuable for decision-makers in understanding the types of forests that can be used in an area, following an approach of environmental sustainability and conservation aiming at restoring hydrological services, mitigating the costs of environmental services, promoting sustainable land use, managing water resources, and preserving and restoring soil water availability (SWA) when investing in reforestation for watershed hydrology, which is important for the human population and other activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.