Context: The influence of playing surface on injury risk in soccer is contentious, and contemporary technologies permit an in vivo assessment of mechanical loading on the player. Objective: To quantify the influence of playing surface on the PlayerLoad elicited during soccer-specific activity. Design: Repeated measures, field-based design. Setting: Regulation soccer pitches. Participants: Fifteen amateur soccer players (22.1 [2.4] y), injury free with ≥6 years competitive experience. Interventions: Each player completed randomized order trials of a soccer-specific field test on natural turf, astroturf, and third-generation artificial turf. GPS units were located at C7 and the mid-tibia of each leg to measure triaxial acceleration (100 Hz). Main Outcome Measures: Total accumulated PlayerLoad in each movement plane was calculated for each trial. Ratings of perceived exertion and visual analog scales assessing lower-limb muscle soreness were measured as markers of fatigue. Results: Analysis of variance revealed no significant main effect for playing surface on total PlayerLoad (P = .55), distance covered (P = .75), or postexercise measures of ratings of perceived exertion (P = .98) and visual analog scales (P = .61). There was a significant main effect for GPS location (P < .001), with lower total loading elicited at C7 than mid-tibia (P < .001), but with no difference between limbs (P = .70). There was no unit placement × surface interaction (P = .98). There was also a significant main effect for GPS location on the relative planar contributions to loading (P < .001). Relative planar contributions to loading in the anterioposterior:mediolateral:vertical planes was 25:27:48 at C7 and 34:32:34 at mid-tibia. Conclusions: PlayerLoad metrics suggest that playing surface does not influence mechanical loading during soccer-specific activity (not including tackling). Clinical reasoning should consider that PlayerLoad magnitude and axial contributions were sensitive to unit placement, highlighting opportunities in the objective monitoring of load during rehabilitation.