2011
DOI: 10.48550/arxiv.1101.3121
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Quantifying momenta through the Fourier transform

B. M. Rodríguez-Lara

Abstract: Integral transforms arising from the separable solutions to the Helmholtz differential equation are presented. Pairs of these integral transforms are related via Plancherel theorem and, ultimately, any of these integral transforms may be calculated using only Fourier transforms. This result is used to evaluate the mean value of momenta associated to the symmetries of the reduced wave equation. As an explicit example, the orbital angular momenta of plane and elliptic-cylindrical waves is presented.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 31 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?