2017
DOI: 10.1007/978-3-319-70942-0_8
|View full text |Cite
|
Sign up to set email alerts
|

Quantifying Predictive Uncertainty Using Belief Functions: Different Approaches and Practical Construction

Abstract: We consider the problem of quantifying prediction uncertainty using the formalism of belief functions. Three requirements for predictive belief functions are reviewed, each one of them inducing a distinct interpretation: compatibility with Bayesian inference, approximation of the true distribution, and frequency calibration. Construction procedures allowing us to build belief functions meeting each of these three requirements are described and illustrated using simple examples.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 30 publications
0
0
0
Order By: Relevance