The article presents research on the application of image processing techniques and convolutional neural networks (CNN) for the detection and measurement of seed sizes, specifically focusing on coffee and white bean seeds. The primary objective of the study is to evaluate the potential of using CNNs to develop tools that automate seed recognition and measurement in images. A database was created, containing photographs of coffee and white bean seeds with precise annotations of their location and type. Image processing techniques and You Only Look Once v8 (YOLO) models were employed to analyze the seeds’ position, size, and type. A detailed comparison of the effectiveness and performance of the applied methods was conducted. The experiments demonstrated that the best-trained CNN model achieved a segmentation accuracy of 90.1% IoU, with an average seed size error of 0.58 mm. The conclusions indicate a significant potential for using image processing techniques and CNN models in automating seed analysis processes, which could lead to increased efficiency and accuracy in these processes.