2016
DOI: 10.5194/nhess-16-149-2016
|View full text |Cite
|
Sign up to set email alerts
|

Quantifying the effectiveness of early warning systems for natural hazards

Abstract: Abstract. Early warning systems (EWSs) are increasingly applied as preventive measures within an integrated risk management approach for natural hazards. At present, common standards and detailed guidelines for the evaluation of their effectiveness are lacking. To support decision-makers in the identification of optimal risk mitigation measures, a three-step framework approach for the evaluation of EWSs is presented. The effectiveness is calculated in function of the technical and the inherent reliability of t… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
8
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 30 publications
(10 citation statements)
references
References 36 publications
0
8
0
2
Order By: Relevance
“…To provide the necessary information to support riskinformed decision making, four performance indicators (PI) are used: effectiveness, durability, reliability, and cost (Table 2). In developing these PIs, different frameworks for evaluating the performance of different types of innovations were reviewed, including temporary flood barriers (Lendering et al, 2016;Margreth & Romang, 2010;Wibowo & Ward, 2016) and early flood warning systems (Sättele, Bründl, & Straub, 2015;Sättele, Bründl, & Straub, 2016). While recognising that tests and results for individual innovations may vary, the PIs are generally applicable and relevant for all flood adaptation innovations.…”
Section: Performance Indicatorsmentioning
confidence: 99%
“…To provide the necessary information to support riskinformed decision making, four performance indicators (PI) are used: effectiveness, durability, reliability, and cost (Table 2). In developing these PIs, different frameworks for evaluating the performance of different types of innovations were reviewed, including temporary flood barriers (Lendering et al, 2016;Margreth & Romang, 2010;Wibowo & Ward, 2016) and early flood warning systems (Sättele, Bründl, & Straub, 2015;Sättele, Bründl, & Straub, 2016). While recognising that tests and results for individual innovations may vary, the PIs are generally applicable and relevant for all flood adaptation innovations.…”
Section: Performance Indicatorsmentioning
confidence: 99%
“…El término alerta temprana (del inglés, early warning) se utiliza para hacer referencia a un conjunto diverso de actividades que persiguen el conocimiento anticipado de la ocurrencia de un fenómeno o circunstancia de carácter negativo, con el objeto de posibilitar diferentes medidas que contribuyan a evitar la propia ocurrencia, o a minimizar los efectos que de la misma puedan derivarse. En este sentido general, la alerta temprana se aplica a múltiples campos (economía, salud, riesgos naturales, etc) y a diferentes escalas temporales que van desde el largo plazo al tiempo real (Quansah, Engel y Rochon, 2010;Sättele, Bründl y Straub, 2016).…”
Section: Introductionunclassified
“…En este sentido, la referida evaluación parte del establecimiento de cuatro situaciones posibles en relación con los sistemas de aviso (Sättele et al, 2016). Estas cuatro situaciones se agrupan en dos situaciones de acierto y dos de fallo (Figura 2).…”
Section: Introductionunclassified
“…A relevant subject covered by many articles included in the special issue is the definition of rainfall thresholds for landslide prediction (e.g., Pan et al, 2018;Peres et al, 2018;Vaz et al, 2018), a highly debated topic among the landslide community that often overlaps to LEWSs (Segoni et al, 2018b). The most debated unresolved issues in rainfall threshold research include the following the definition of objective and automatic procedures to define the thresholds (Staley et al, 2013;Segoni et al, 2014;Iadanza et al, 2016;Vessia et al, 2016;Rossi et al, 2017;Melillo et al, 2018);…”
Section: Introductionmentioning
confidence: 99%