The regionalization of food systems in order to shorten supply chains and develop local agriculture to feed city regions presents particular challenges for food planning and policy. The existing foodshed approaches enable one to assess the theoretical capacity of the food self-sufficiency of a specific region, but they struggle to consider the diversity of existing crops in a way that could be usable to inform decisions and support urban food strategies. Most studies are based on the definition of the area required to meet local consumption, obtaining a map represented as an isotropic circle around the city, without considering the site-specific pedoclimatic, geographical, and socioeconomic conditions which are essential for the development of local food supply chains. In this study, we propose a first stage to fill this gap by combining the Metropolitan Foodshed and Self-sufficiency Scenario model, which already considers regional yields and specific land use covers, with spatially-explicit data on the cropping patterns, soil and topography. We use the available Europe-wide data and apply the methodology in the city region of Avignon (France), initially considering a foodshed with a radius of 30 km. Our results show that even though a theoretically-high potential self-sufficiency could be achieved for all of the food commodities consumed (>80%), when the specific pedological conditions of the area are considered, this could be suitable only for domestic plant-based products, whereas an expansion of the initial foodshed to a radius of 100 km was required for animal products to provide >70% self-sufficiency. We conclude that it is necessary to shift the analysis from the size assessment to the commodity-group–specific spatial configuration of the foodshed based on biophysical and socioeconomic features, and discuss avenues for further research to enable the development of a foodshed assessment as a complex of complementary pieces, i.e., the ‘foodshed archipelago’.