Abstract:Haptics provides sensory stimuli that represent the interaction with a virtual or telemanipulated object, and it is considered a valuable navigation and manipulation tool during tele-operated surgical procedures. Haptic feedback can be provided to the user via cutaneous information and kinesthetic feedback. Sensory subtraction removes the kinesthetic component of the haptic feedback, having only the cutaneous component provided to the user. Such a technique guarantees a stable haptic feedback loop, while it keeps the transparency of the tele-operation system high, which means that the system faithfully replicates and render back the user's directives. This work focuses on checking whether the interaction forces during a bench model neurosurgery operation can lie in the solely cutaneous perception of the human finger pads. If this assumption is found true, it would be possible to exploit sensory subtraction techniques for providing surgeons with feedback from neurosurgery. We measured the forces exerted to surgical tools by three neurosurgeons performing typical actions on a brain phantom, using contact force sensors, whilst the forces exerted by the tools to the phantom tissue were recorded using a load cell placed under the brain phantom box. The measured surgeon-tool contact forces were 0.01 -3.49 N for the thumb and 0.01 -6.6 N for index and middle finger, whereas the measured tool-tissue interaction forces were from six to eleven times smaller than the contact forces, i.e., 0.01 -0.59 N. The measurements for the contact forces fit the range of the cutaneous sensitivity for the
Powered by Edit orial Manager® and ProduXion Manager® from Aries Syst em s Corporat ionhuman finger pad, thus, we can say that, in a tele-operated robotic neurosurgery scenario, it would possible to render forces at the fingertip level by conveying haptic cues solely through the cutaneous channel of the surgeon's finger pads. This approach would allow high transparency and high stability of the haptic feedback loop in a teleoperation systemResponse to Reviewers: REVIEWER 1 Comment no. 1: The methodology of the submitted work is good and, since it is a bench model, it might allow to replace other similar systems presented in previous works. However, the authors should make an extra effort to increase the clarity of the text. The added section 2 is a good help to put the work in context. However, section 1 appears as too long and lacks focus. I would recommend to severely shorten section 1 and merge it with section 2. Our answer:We thank the reviewer for the positive opinion on our work. To improve the clarity of the introductory part, we have removed an example of sensory substitution reference and an example of sensory subtraction application reference. Moreover, we have merged Section 2 Related Works with Section 1 Introduction, which now comprises the related works as a subsection.Comment no. 2: Also section 5 could be reorganized to strengthen the papers conclusion. Our answer:We have modified Section 4 Discussion as follow...