2020
DOI: 10.26554/sti.2020.5.3.79-84
|View full text |Cite
|
Sign up to set email alerts
|

Quantile Regression Approach to Model Censored Data

Abstract: Abstract The censored quantile regression model is derived from the censored model. This method is used to overcome problems in modeling censored data as well as to overcome the assumptions of linear models that are not met. The purpose of this study is to compare the results of the analysis of the quantile regression method with the censored quantile regression method for censored data. Both methods were applied to generated data of 150, 500, and 3000 sample size. The best model is then chosen based on … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
1
0
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(3 citation statements)
references
References 12 publications
0
1
0
2
Order By: Relevance
“…Pada pemodelan dengan analisis regresi seringkali ditemui data dengan variabel respon yang tidak memiliki nilai pada sebagian pengamatannya atau disebut dengan data tersensor (Yanuar, 2020). Data tersensor adalah jenis data yang tidak memberikan informasi lengkap mengenai variabel yang digunakan.…”
Section: Pendahuluanunclassified
See 1 more Smart Citation
“…Pada pemodelan dengan analisis regresi seringkali ditemui data dengan variabel respon yang tidak memiliki nilai pada sebagian pengamatannya atau disebut dengan data tersensor (Yanuar, 2020). Data tersensor adalah jenis data yang tidak memberikan informasi lengkap mengenai variabel yang digunakan.…”
Section: Pendahuluanunclassified
“…(Destiyanto et al, 2020) melakukan analisis pada data tersensor pasien penderita penyakit kanker payudara dengan regresi Tobit kuantil Bayesian. (Yanuar, 2020) membahas metode regresi kuantil pada data tersensor.…”
Section: Pendahuluanunclassified
“…The censored quantile regression model is derived from the censored model. This method is used to overcome problems in modeling censored data as well as to overcome the assumptions of linear models that are not met, in this linear models Sarmada and Yanuar [32] have compared the results of the analysis of the quantile regression method with the censored quantile regression method for censored data. In the context of censored data, Gannoun et al [17] introduced a local linear (LL) estimator of the quantile regression and established its almost sure consistency (without rate) as well as its asymptotic normality in the independent and identically distributed (i.i.d.)…”
mentioning
confidence: 99%