Ceramic reinforced metal matrix composite (CMMC) cams in engines could improve fuel efficiency and wear resistance compared to traditional steel cams but require absolute evaluation. However, ensuring safe CMMC cam operation demands extensive wear testing, mimicking real-world conditions over longer durations instead of limited lab evaluations. This study is an extension of the previously reported feasibility analysis of the ceramic particle reinforced Al matrix composite labs. The performance of the best selected (Al + 20, 30 vol. % SiC(2µm)) composites for a wear duration of 2.5, 5, 7.5, and 15 h is reported with various combinations of pressures and compared with the reference cam lobes. Results showed that the higher content of ceramic particles improved the wear resistance, however, the influence diminished at larger durations due to surface hardening of the composites. The wear performance of the composite (Al + 30 vol.% SiC) reaches 73% of the conventional cams but it also causes significant wear in the counterface due to initiation of three-body-wear by the dislodged ceramic particles.