In nature, microbes often need to “decide” which of several available nutrients to utilize, a choice that depends on a cell’s inherent preference and external nutrient levels. While natural environments can have mixtures of different nutrients, phenotypic variation in microbes’ decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the concentration of glucose and galactose required to induce galactose-responsive (GAL) genes across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a selectable trait. These results suggest that ecological constraints on the galactose pathway may have led to variation in a single protein, allowing cells to quantitatively tune their response to nutrient changes in the environment.Author summaryIn nature, microbes often need to decide which of many potential nutrients to consume. This decision making process is complex, involving both intracellular constraints and the organism’s perception of the environment. To begin to mimic the complexity of natural environments, we grew cells in mixtures of two sugars, glucose and galactose. We find that in mixed environments, the sugar concentration at which cells decides to induce galactose-utilizing (GAL) genes is highly variable in natural isolates of yeast. By analyzing crosses of phenotypically different strains, we identified a locus containing the galactose sensor, a gene that in theory could allow cells to tune their perception of the environment. We confirmed that the galactose sensor can explain upwards of 90% of the variation in the decision to induce GAL genes. Finally, we show that the variation in the galactose sensor can modulate the time required for cells to switch from utilizing glucose to galactose. Our results suggest that signaling pathways can be highly variable across strains and thereby might allow for rapid adaption in fluctuating environments.