Calibration curve is a regression model used to predict the unknown concentrations of analytes of interest based on the response of the instrument to the known standards. Some statistical analyses are required to choose the best model fitting to the experimental data and also evaluate the linearity and homoscedasticity of the calibration curve. Using an internal standard corrects for the loss of analyte during sample preparation and analysis provided that it is selected appropriately. After the best regression model is selected, the analytical method needs to be validated using quality control (QC) samples prepared and stored in the same temperature as intended for the study samples. Most of the international guidelines require that the parameters, including linearity, specificity, selectivity, accuracy, precision, lower limit of quantification (LLOQ), matrix effect and stability, be assessed during validation. Despite the highly regulated area, some challenges still exist regarding the validation of some analytical methods including methods when no analyte-free matrix is available.