A rapid and efficient method using an alkyl-functionalized magnetic nanoparticles-based extraction technique combined with Ultra-High Performance Liquid Chromatography was developed for the detection of trace amounts of polycyclic aromatic hydrocarbons in tea leaves. As a popular coating for chromatographic column packing materials, C18-alkyl has been demonstrated to be effective in separating polycyclic aromatic hydrocarbons. Additionally, the magnetism of the nanomaterials accelerates the extraction process while their high surface ratio enables desirable dispersity in the sample matrix. Meanwhile, the adsorbents can be washed and reused 30 times without compromising recovery, which greatly reduces the budget. The effects of various parameters were investigated and optimized, and the recoveries for five analytes were in the range of 84.8–105.4%. The RSD of intra-day and inter-day were below 11.9% and 6.8%, respectively. The limits of detection and limits of quantification ranged from 1.69–9.97 ng g−1 and 5.12–30.21 ng g−1, indicating satisfactory sensitivity. Thus, the proposed methodology is rapid, highly efficient, and economical, and it expands the application of magnetic cleanup approaches in complex food matrices.