Viscoelastic surfactants (VESs) are used as diverting agents in carbonate matrix acidizing. However, these surfactants can adversely affect the wettability around the wellbore.Receding contact angles were measured with the conventional method to study the effect of spent-acid solutions with an amphoteric amine-oxide VES and the mutual solvent ethylene glycol monobutyl ether (EGMBE) on the wettability of Austin cream chalk rocks. The conventional method involves the injection of oil droplets into the surfactant solution. However, contact angles could not be measured when oil droplets were injected into spentacid solutions with VES and EGMBE, because low oil/acid interfacial tensions (IFTs) cause them to spread on the rock surface.A new procedure was used for these contact-angle measurements. Rocks were centrifuged in spent-acid solutions with VES and EGMBE, so that the surfactant changed the interfacial properties of the rock. Then, contact angles were measured in spent acid with hydrochloric acid (HCl) only, to prevent VES and EGMBE from reducing the oil/acid IFT. The effect of the surfactants in the spent acid on the acid/rock and acid/oil IFT, which is the wettability, is shown by the difference in contact angles before and after centrifuging.With the new procedure, a spent-acid solution with HCl, 1 vol% of VES, and 10 vol% of EGMBE made an oil-wet rock water-wet and a water-wet rock strongly water-wet at 25 C. This suggests that an EGMBE post-flush enhances the relative permeability to oil, under the parameters investigated.Contact angles are a function of the oil/rock, acid/rock, and oil/acid IFTs. However, the wettability of the rock is a function of the oil/rock and acid/rock IFT only. The new procedure measures contact angles in such a way that the surface-active agents change the oil/rock and acid/rock IFT only so that "spreading," an artifact caused by oil/acid IFT reduction, may not occur.