Ac susceptometry and magnetic hysteresis studies are the two most used techniques for the basic characterization of magnetic relaxation properties of Single-Molecule Magnets. Nevertheless, the full quantitative treatment of such studies is rarely carried out, in particular as regards the absolute magnitudes of the in-phase (χʹ) and out-of-phase (χʺ) ac susceptibility signals, and the exact shapes of hysteresis loops. To facilitate such quantitative analyses, an SMM evaluator tool has been developed. It uses the dc magnetic susceptibility/magnetization properties of any SMM, and the parameters characteristic of the various relevant relaxation processes (Orbach, Raman, Direct, QTM) to calculate the exact ac susceptibility/magnetic hysteresis curves under any temperature, magnetic field and ac frequency or dc field scan rate. It also implements a model that calculates the actual fraction of molecules that contribute to the SMM effect, as well as models which account for distributions of the relaxation times. Indicative examples of a "strong", a "medium" and a "weak" SMM are analysed with this tool, demonstrating the additional information that can be extracted by quantitative treatment of such data.