To evaluate the trustworthiness of saliency maps for abnormality localization in medical imaging.
Materials and Methods:Using two large publicly available radiology datasets (SIIM-ACR Pneumothorax Segmentation and RSNA Pneumonia Detection), we quantified the performance of eight commonly used saliency map techniques in regards to their 1) localization utility (segmentation and detection), 2) sensitivity to model weight randomization, 3) repeatability, and 4) reproducibility. We compared their performances versus baseline methods and localization network architectures, using area under the precision-recall curve (AUPRC) and structural similarity index (SSIM) as metrics.Results: All eight saliency map techniques fail at least one of the criteria and were inferior in performance compared to localization networks. For pneumothorax segmentation, the AUPRC ranged from 0.024-0.224, while a U-Net achieved a significantly superior AUPRC of 0.404 (p<0.005). For pneumonia detection, the AUPRC ranged from 0.160-0.519, while a RetinaNet achieved a significantly superior AUPRC of 0.596 (p<0.005). Five and two saliency methods (out of eight) failed the model randomization test on the segmentation and detection datasets, respectively, suggesting that these methods are not sensitive to changes in model parameters. The repeatability and reproducibility of the majority of the saliency methods were worse than localization networks for both the segmentation and detection datasets.
Conclusion:We suggest that the use of saliency maps in the high-risk domain of medical imaging warrants additional scrutiny and recommend that detection or segmentation models be used if localization is the desired output of the network.