In this review we focus on the idea of establishing connections between the mechanical properties of DNAligand complexes and the physical chemistry of DNA-ligand interactions. This type of connection is interesting because it opens the possibility of performing a robust characterization of such interactions by using only one experimental technique: single molecule stretching. Furthermore, it also opens new possibilities in comparing results obtained by very different approaches, in special when comparing single molecule techniques to ensemble-averaging techniques. We start the manuscript reviewing important concepts of the DNA mechanics, from the basic mechanical properties to the Worm-Like Chain model. Next we review the basic concepts of the physical chemistry of DNA-ligand interactions, revisiting the most important models used to analyze the binding data and discussing their binding isotherms. Then, we discuss the basic features of the single molecule techniques most used to stretch the DNA-ligand complexes and to obtain force × extension data, from which the mechanical properties of the complexes can be determined. We also discuss the characteristics of the main types of interactions that can occur between DNA and ligands, from covalent binding to simple electrostatic driven interactions. Finally, we present a historical survey on the attempts to connect mechanics to physical chemistry for DNA-ligand systems, emphasizing a recently developed fitting approach useful to connect the persistence length of the DNA-ligand complexes to the physicochemical properties of the interaction. Such approach in principle can be used for any type of ligand, from drugs to proteins, even if multiple binding modes are present.