Kinematic evaluation via portable sensor system has been increasingly applied in neurological sciences and clinical practice. However, conventional kinematic evaluation rarely extends the context beyond the motor impairment level. In addition, kinematic tasks with numerous items could be complex and time consuming that pose a burden to test applications and data processing. The study aimed to explore the correlation of finger-to-nose task (FNT) kinematics via Inertial Measurement Unit with upper limb motor function in subacute stroke. In this study, six FNT kinematic variables were used to measure movement time, smoothness, and velocity in 37 participants with subacute stroke. Upper limb motor function was evaluated with the Fugl-Meyer Assessment for Upper Extremity (FMA-UE), Action Research Arm Test (ARAT), and modified Barthel Index (MBI). As a result, mean velocity, peak velocity, and the number of movement units were associated with the clinical assessments. The multivariable linear regression models could estimate 55%, 51%, and 32% of variance in FMA-UE, ARAT, and MBI, respectively. In addition, age, gender, type of stroke, and paretic side had no significant effects on these associations. Results show that FNT kinematic variables measured via Inertial Measurement Unit are associated with upper extremity motor function in individuals with subacute stroke. The objective kinematic evaluation may be suitable for predicting clinical measures of motor impairment and capacity to understand upper extremity motor recovery and clinical decision making after stroke. This trial is registered with ChiCTR1900026656.