The effect of the addition of 0.042 wt.% of titanium on the relation between the evolution of the microstructure and the softening kinetics of quenched martensite in high-purity Fe-C-Mn steel has been studied during tempering at 300 and 550°C. The evolution of the microstructure is characterized by measuring the cementite particle size, the martensite block size, the area fraction of martensite regions which contain a high dislocation density, the macroscopic hardness, the nano-hardness of martensite blocks boundaries, the nano-hardness of the matrix and the TiC-precipitate size during tempering. Nucleation of TiC-precipitates take place during annealing at 550°C and starts earlier in regions close to the block boundaries, after 5-10 minutes, and thereafter in the matrix, after 10-30 minutes, due to the higher dislocation density in the regions close to the block boundaries. The TiC-precipitates slow down the recovery in regions of high dislocation density compared to the alloy without TiC-precipitates. The TiC-precipitates increase the macroscopic hardness of the steel after 30 minutes annealing at 550°C. The growth of TiC-precipitates in martensite is simulated in good agreement with experimental observations by a model that takes into account: 1) capillarity effects, 2) the overlap of the titanium diffusion fields between TiC-precipitates, and 3) the effect of pipe diffusion of titanium atoms via multiple dislocations. The average, experimentallyobserved, TiC-precipitate size is 69 ± 48 Ti atoms.