Machine Learning (ML), a subfield of Artificial Intelligence (AI), is being increasingly used in Orthodontics and craniofacial health for predicting clinical outcomes. Current ML/AI models are prone to accentuate racial disparities. The objective of this narrative review is to provide an overview of how AI/ML models perpetuate racial biases and how we can mitigate this situation. A narrative review of articles published in the medical literature on racial biases and the use of AI/ML models was undertaken. Current AI/ML models are built on homogenous clinical datasets that have a gross underrepresentation of historically disadvantages demographic groups, especially the ethno‐racial minorities. The consequence of such AI/ML models is that they perform poorly when deployed on ethno‐racial minorities thus further amplifying racial biases. Healthcare providers, policymakers, AI developers and all stakeholders should pay close attention to various steps in the pipeline of building AI/ML models and every effort must be made to establish algorithmic fairness to redress inequities.