Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics 2017
DOI: 10.1145/3152178.3152182
|View full text |Cite
|
Sign up to set email alerts
|

Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use

Abstract: This paper performs a quantitative comparison of open-source data available on the Internet for the fine-grain mapping of land use. Three points of interest (POI) data sources-Google Places, Bing Maps, and the Yellow Pages-and one volunteered geographic information data source-Open Street Map (OSM)-are compared with each other at the parcel level for San Francisco with respect to a proposed fine-grain land-use taxonomy. The sources are also compared to coarse-grain authoritative data which we consider to be th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
7
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 10 publications
(9 citation statements)
references
References 18 publications
0
7
0
2
Order By: Relevance
“…Nowadays, the great data collecting potential of crowd-sourced social media is being exploited to analyze a diverse range of topics related to the functional organization of the city (Arribas-Bel and Tranos, 2018), such as the relationship between urban form and function (Crooks, Pfoser et al, 2015;Crooks, Croitoru et al, 2016); the identification of POIs-points of interest- (Van Canneyt et al, 2012;Deng and Newsam, 2017;García-Palomares et al, 2015;Van Weerdenburg et al, 2019) and their accessibility in terms of density and diversity (Shen and Karimi, 2016); the characterization of livelihoods according to the collective behaviors of residents (Cranshaw et al, 2012); and the delimitation of functional areas to understand social and spatio-temporal aspects of the city (Chen et al, 2017;Rösler and Liebig, 2013).…”
Section: Urban Activity Patterns Through Location-based Social Networkmentioning
confidence: 99%
See 1 more Smart Citation
“…Nowadays, the great data collecting potential of crowd-sourced social media is being exploited to analyze a diverse range of topics related to the functional organization of the city (Arribas-Bel and Tranos, 2018), such as the relationship between urban form and function (Crooks, Pfoser et al, 2015;Crooks, Croitoru et al, 2016); the identification of POIs-points of interest- (Van Canneyt et al, 2012;Deng and Newsam, 2017;García-Palomares et al, 2015;Van Weerdenburg et al, 2019) and their accessibility in terms of density and diversity (Shen and Karimi, 2016); the characterization of livelihoods according to the collective behaviors of residents (Cranshaw et al, 2012); and the delimitation of functional areas to understand social and spatio-temporal aspects of the city (Chen et al, 2017;Rösler and Liebig, 2013).…”
Section: Urban Activity Patterns Through Location-based Social Networkmentioning
confidence: 99%
“…Specifically, this classification is the one that addresses the "functional dimension," one of the five available LBCS dimensions, which refers to "the economic function or type of establishment using the land" (American Planning Association, 2018b). This hierarchical classification provides an overall fine-grain land use class taxonomy of nine Level 1 categories, 47 Level 2 categories, and 159 Level 3 categories (Deng and Newsam, 2017). All refined Google Places place types were assigned to APA Level 1 (See Figure 2) and Level 2 (See Table 1) category codes, respectively.…”
Section: Recategorizing Operating Datapoints: From Google Places Categories To Apa Land Based Classification Standards Benchmark Categorimentioning
confidence: 99%
“…And this method is heavily depended on the availability of photos that has geo-information. Besides ground-level images, some researches are using point of interest information from social network which contains the functional and locational properties (Ty et al, 2016, Deng, Newsam, 2017. Even these methods work well in cities, it is still an approximate estimate.…”
Section: Related Workmentioning
confidence: 99%
“…En cualquier caso, ambas redes sociales recopilan, de uno u otro modo, una base de datos referente tanto a la oferta de actividades económicas como a su demanda -de acuerdo con sus registros en forma de places o venues-puesto que ambas cuentan con una variable que recoge la valoración cuantitativa que los usuarios hacen de la actividad -rating-. Concretamente, la información contenida en Google Places permite observar de qué manera las actividades comerciales y empresariales se complementan con otras como la restauración u otros tipos de ocio (Deng y Newsam, 2017;Milne, Thomas y Paris, 2012;Van Canneyt et al, 2012); y, Foursquare permite analizar cuáles son las actividades más atractivas en un determinado contexto urbano (Noulas, Mascolo y Frias-Martinez, 2013;Bentley, Cramer y Müller, 2015). Además, a través de datos de otras redes sociales como Airbnb es posible estudiar también la oferta y la demanda en el alojamiento temporal no regulado, así como cuáles son los tipos de alquiler -total o parcial-y los tipos de inmuebles -apartamentos, viviendas aisladas, etc.-más demandados por este tipo de actividad en distintos ámbitos y ciudades (Perez-Sanchez et al, 2018;Moreno-Izquierdo et al, 2019).…”
Section: Estudio De La Oferta Y Demanda De La Actividad Económicaunclassified