Currently, DC breakers are commonly used in mainstream protection schemes for DC grids to eliminate faults. However, the cost of high voltage DC (HVDC) breakers is high, and equipping each DC line with DC breakers is expensive. In order to minimize the number of DC breakers while ensuring the reliability of the power supply, a zonal protection strategy suitable for multi-voltage level DC grids is proposed. Subsequently, the qualitative impact of partial power interruption caused by fault DC areas is analyzed in the system. The basic zonal principle of the multi-voltage level DC grid is formulated, taking into account unbalanced power, the mode of system-level control, and the type of converters. Additionally, a time sequence coordination strategy is derived in detail based on the characteristics of DC breakers, AC/DC converters, DC/DC converters, AC breakers, high-speed switches, and other fault removal components. Finally, a seven-terminal DC grid is modeled in the PSCAD/EMTDC simulation platform. According to the simulation analysis, the DC grid can adopt the converter with fault clearing ability or an AC circuit breaker to cooperate with the fast disconnector (FD) to complete fault clearing in the DC fault area under the proposed zonal protection coordination strategy.