Early detection of osteoporosis using advanced imaging is imperative to the successful treatment and prevention of high morbidity fractures in aging patients. In this preclinical study, we aimed to compare dual‐energy X‐ray absorptiometry (DXA) and quantitative computed tomography (QCT) to quantify bone mineral density (BMD) changes in the sheep lumbar spine. We also aimed to determine the relationship of BMD to microarchitecture in the same animals as an estimate of imaging modality precision. Osteoporosis was induced in 10 ewes via laparoscopic ovariectomy and administration of high‐dose corticosteroids. We performed DXA and QCT imaging to measure areal BMD (aBMD) and trabecular volumetric BMD (Tb.vBMD)/cortical vBMD (Ct.vBMD), respectively, at baseline (before ovariectomy) and at 3, 6, 9, and 12 months after ovariectomy. Iliac crest bone biopsies were collected at each time point for micro‐computed tomography (microCT) analysis; bone volume fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th), and spacing (Tb.Sp) were reported. aBMD and Tb.vBMD both decreased significantly by 3 and 6 months (p < 0.05) compared with baseline, whereas no changes to Ct.vBMD were observed. Combined (Tb. and Ct.) vBMD was significantly correlated with aBMD at all time points (all p < 0.05). Additionally, greater significant correlations were found between BV/TV and Tb.vBMD at all five time points (R2 = 0.54, 0.57, 0.66, 0.46, and 0.56, respectively) than with aBMD values (R2 = 0.23, 0.55, 0.41, 0.20, and 0.19, respectively). The higher correlation of microCT values with QCT than with DXA indicates that QCT provides additional detailed information regarding bone mineral density changes in preclinical settings. Because trabecular bone is susceptible to rapid density loss and structural changes during osteoporosis, QCT can capture these subtle changes more precisely than DXA in a large animal preclinical model. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.