Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900 -360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a ϳ10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore.Although nonviral gene transfer methods transfect dividing cells, these technologies fail to transfect most postmitotic cells (1-10), with the principal exceptions of naked DNA gene transfer into muscle (11) and large volume hydrodynamic gene transfer into liver (12, 13). In dividing cells, nuclear membrane disintegration during mitosis allows plasmid DNA to enter the nucleus prior to membrane reformation. Otherwise, the intact nuclear membrane restricts transfer of naked DNA into the nucleus. The nuclear membrane pore (NMP) 1 has an internal channel diameter of 25 nm (14, 15) and does not permit naked DNA to effectively cross into the nucleus, probably due to the extended size of hydrated DNA and its negative charge density (4,16,17). The NMP does permit passive transfer of gold particles less than 9 -10 nm in diameter and linear DNA fragments up to ϳ300 bp (18 -22) as well as facilitated transport of proteins and small DNA segments (up to ϳ1 kbp) having nuclear localization signals (7,(22)(23)(24)(25)(26)(27)(28). The relative inefficiency of naked DNA, liposome-DNA complexes, and protein-and polymer-based DNA conjugates to transfect nondividing cells productively remains a significant barrier for in vivo gene therapy. Electrostatic interactions between polycationic polymers and DNA can result in conjugates consisting of one or more molecules of DNA and a sufficient number of polycations to produce a nearly charge-neutral complex (29 -31). The ratio of positive to negative charges, buffer components, polycation counterion, DNA concentration, and pH, among other variables, influence the composition, size, and shape of these DNA conjugates (29,32). Based on specific fo...