Microbial reductive dechlorination by members of the phylum Chloroflexi, including the genus Dehalococcoides, may play an important role in natural detoxification of highly chlorinated environmental pollutants, such as polychlorinated biphenyls (PCBs). Previously, we showed the increase of an indigenous bacterial population belonging to the Pinellas subgroup of Dehalococcoides spp. in Anacostia River sediment (Washington DC, USA) microcosms treated with halogenated co-substrates ("haloprimers"), tetrachlorobenzene (TeCB), or pentachloronitrobenzene (PCNB). The PCNB-amended microcosms exhibited enhanced dechlorination of weathered PCBs, while TeCB-amended microcosms did not. We therefore developed and used different phylogenetic approaches to discriminate the effect of the two different haloprimers. We also developed complementary approaches to monitor the effects of haloprimer treatments on 12 putative reductive dehalogenase (rdh) genes common to Dehalococcoides ethenogenes strain 195 and Dehalococcoides sp. strain CBDB1. Our results indicate that 16S rRNA gene-based phylogenetic analyses have a limit in their ability to distinguish the effects of two haloprimer treatments and that two of rdh genes were present in high abundance when microcosms were amended with PCNB, but not TeCB. rdh gene-based phylogenetic analysis supports that these two rdh genes originated from the Pinellas subgroup of Dehalococcoides spp., which corresponds to the 16S rRNA gene-based phylogenetic analysis.