Managers are increasingly implementing reintroduction programs as part of a global effort to alleviate amphibian declines. Given uncertainty in factors affecting populations and a need to make recurring decisions to achieve objectives, adaptive management is a useful component of these efforts. A major impediment to the estimation of demographic rates often used to parameterize and refine decision-support models is that life-stage-specific monitoring data are frequently sparse for amphibians. We developed a new parameterization for integrated population models to match the ecology of amphibians and capitalize on relatively inexpensive monitoring data to document amphibian reintroductions. We evaluate the capability of this model by fitting it to Oregon spotted frog (Rana pretiosa) monitoring data collected from 2007 to 2014 following their reintroduction within the Klamath Basin, Oregon, USA. The number of egg masses encountered and the estimated adult and metamorph abundances generally increased following reintroduction. We found that survival probability from egg to metamorph ranged from 0.01 in 2008 to 0.09 in 2009 and was not related to minimum spring temperatures, metamorph survival probability ranged from 0.13 in 2010-2011 to 0.86 in 2012-2013 and was positively related to mean monthly temperatures (logit-scale slope = 2.37), adult survival probability was lower for founders (0.40) than individuals recruited after reintroduction (0.56), and the mean number of egg masses per adult female was 0.74. Our study is the first to test hypotheses concerning Oregon spotted frog egg-to-metamorph and metamorph-to-adult transition probabilities in the wild and document their response at multiple life stages following reintroduction. Furthermore, we provide an example to illustrate how the structure of our integrated population model serves as a useful foundation for amphibian decision-support models within adaptive management programs. The integration of multiple, but related, data sets has an advantage of being able to estimate complex ecological relationships across multiple life stages, offering a modeling framework that accommodates uncertainty, enforces parsimony, and ensures all model parameters can be confronted with monitoring data.