Monoclonal
antibodies labeled with near-infrared (NIR) fluorophores
have potential use in disease detection, intraoperative imaging, and
pharmacokinetic characterization of therapeutic antibodies in both
the preclinical and clinical setting. Recent work has shown conjugation
of NIR fluorophores to antibodies can potentially alter antibody disposition
at a sufficiently high degree of labeling (DoL); however, other reports
show minimal impact after labeling with NIR fluorophores. In this
work, we label two clinically approved antibodies, Herceptin (trastuzumab)
and Avastin (bevacizumab), with NIR dyes IRDye 800CW (800CW) or Alexa
Fluor 680 (AF680), at 1.2 and 0.3 dyes/antibody and examine the impact
of fluorophore conjugation on antibody plasma clearance and tissue
distribution. At 0.3 DoL, AF680 conjugates exhibited similar clearance
to unlabeled antibody over 17 days while 800CW conjugates diverged
after 4 days, suggesting AF680 is a more suitable choice for long-term
pharmacokinetic studies. At the 1.2 DoL, 800CW conjugates cleared
faster than unlabeled antibodies after several hours, in agreement
with other published reports. The tissue biodistribution for bevacizumab–800CW
and −AF680 conjugates agreed well with literature reported
biodistributions using radiolabels. However, the greater tissue autofluorescence
at 680 nm resulted in limited detection above background at low (∼2
mg/kg) doses and 0.3 DoL for AF680, indicating that 800CW is more
appropriate for short-term biodistribution measurements and intraoperative
imaging. Overall, our work shows a DoL of 0.3 or less for non-site-specifically
labeled antibodies (with a Poisson distribution) is ideal for limiting
the impact of NIR fluorophores on antibody pharmacokinetics.